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Summary 

A derivation of the generalized Lagally theorem for the forces on a body in translational motion in an unsteady 
inhomogeneous flow field of an inviscid incompressible fluid is given. It is also shown that some well-known 
results for the forces on spherical bodies can be obtained in a simple way by using this theorem. 

1. Introduction 

In this paper a generalization of what is known as the Lagally theorem is considered. This 
theorem expresses the hydrodynamic force on a body in an unsteady inhomogeneous flow 
of an incompressible inviscid fluid in terms of the strengths of the singularities associated 
with the analytically continued flow within the body. When the exterior potential field is 
given by 

1 1.~q M oq [ 1 ) 
dP(X) = --4--~ E ( - - s  " qS-~xq ~ Ix-xsl ' 

where Mqs is the strength of a general multipole of order q at the point Xs and E~ denotes 
summation over all singularities, the generalized Lagally theorem yields the following 
expression for the hydrodynamic force on a deformable body: 

~q 
(1) 

Here p, is the fluid density, v c is the velocity of the centre xc of volume V of the body; u r 
is the velocity induced at the location of a multipole in x S by all other external flow 
producing mechanisms and ( )s denotes that the various derivatives should be evaluated at 
the points xs. 

Theorems on the relations between certain kinds of added masses of bodies moving 
steadily through an inviscid liquid, the forces acting upon them and the singularities of the 
flow field were given in the 1920's by M. Lagally, G.I. Taylor and M.M. Munk, and 
generalizations to unsteady motion and all kinds of added masses were published in the 
1950's by W.E. Cummins, G. Birkhoff, L. Landweber and C.S. Yih (references may be 
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found in Landweber and Yih [1]). A recent rigorous derivation of the generalized Lagally 
theorem by Landweber and Miloh [2] contained some errors. Their corrected derivation 
(Landweber and Miloh [3]) now consists of, as they call it, "some exercises in spherical 
harmonics". 

The purpose of this note is to give a shorter and much simpler alternative to the 
Landweber and Miloh derivation. It partly follows their derivation but uses at certain 
stages ideas put forward in van Wijngaarden [4]. In the final section some well-known 
results are established again as demonstrations of the use of the Lagally theorem. These 
somewhat obvious examples were also chosen in order to enable us to make a brief 
comment on the use of relations for single particles in theories for two-phase bubbly liquid 
flows. 

2. A derivation of the generalized Lagally theorem 

Consider a deformably body moving without rotation in an inviscid, incompressible fluid 
with density Pl- We employ a co-ordinate system fixed at infinity and denote the position 
vector of a point by x. The centre of the body xc is taken to move with velocity 

d x c 

v c -  dt  , 

and in addition the body surface is allowed to have a deformation velocity v d relative to 
the centre of the body. The flow is irrotational and characterized by the velocity potential 

and the velocity u = XTx~. The hydrodynamic force exerted on the body by the 
surrounding fluid arises from the pressure at the body surface 

1: = - f p n d A ,  

and with the aid of Bernoulli's theorem, we have 

a,# 
r=  p,f + p,f -p,fg.x, ,da.  (2) 

The last integral in (2) represents the buoyancy force on the body and will be omitted in 
what follows. 

The expression (2) may also be written as 

d 
r= f+.da + p , f ( ½ . - . -  . .- .)OA, 

where d / d t  is the material derivative following the motion of the body. The first term on 
the right-hand side may be called the acceleration reaction (FA), while the second term 
may be referred to as the steady force (Fs), since it represents the force on the body in 
steady motion. As mentioned in Section 1, the Lagally theorem expresses these forces in 
terms of products of the singularity strengths and gradients of the velocity potential to be 
evaluated at the location of the singularities. To obtain these expressions we consider the 
acceleration reaction first, postponing the treatment of the steady force at this moment. 
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2.1. The acceleration reaction 

Apply Green's reciprocal theorem to the volume bounded externally by the body surface 
and internally by surfaces A,s enclosing small regions V,s about the points x s, at which the 
singularities are located. This yields 

d[j 1 FA= O,~-~ xVxep'ndA + ~, f (eon - XVxdP'n)dA,s . 
s 

With the aid of Gauss' theorem we obtain for the first integral 

f xVxeo.ndA = f xvc'ndA + f xvd 'ndA = vcV + f xvd "ndA, 

where b" is the volume of the body. Further, by the Reynolds transport theorem, 

o ( x y )  f xv d • n d A = -~  

(3) 

 qs q( 1 )  q(1) 
eps(x) = 4,n" 3x q I x_  xd ' us(x)  = 4~r axq Vx Ix x~L ' 

(4) 

and a regular part (dpr , Ur)  associated with other mechanisms producing the flow at x s. 
Since 

lim f (eorn - xvxeor'n)dA,  s = O, 
A,~0 

the regular parts of the potentials do not contribute to the second integral in (3). 
To obtain the contributions due to the singular parts, first consider the singularities to 

consist only of monopoles. We then have 

f (  ms m s ( X - X s )  n)dA,s" 
4,fix - xsl n - x affix _ xd 3 

At this point we are allowed to choose the A,s to be the surfaces of spheres with radii % 
centred about x s, 

m ms ) 
- - - n - x  n ' ~  d A , s = - E m ~ x ~  (5) 

4~r% 4,rrc2 s 

Calculate next the dipole contributions with potentials 

1 ( 1  / 
~s(x) = - ~ .  vxs Ix - x d  

At each point x s the potential and the velocity can be taken to consist of a singular part 
(q~s, us), where the singularities are assumed to be multipoles of order q and strength Mqs, 
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For any surface A,s, however small, it is always possible to choose a 8x~ such that the 
potential field at A,s, associated with a dipole at x~, is a linear superposition of the 
potential fields due to a source and a sink with strengths of equal magnitude at the points 
xs + ½8x~ and x~ - ½8Xs, 

1 1 ) 
~ ( x )  = ~ - I x -  X s -  ½Sxsl + I x -  xs + ½8Xsl ' 

with ksSx S = / ~ .  Substituting this expression into the second integral of (3) we have 

1 1 ) 
E f ~  -ix_xs2½,~x~l + Ix-xs~½8xsl 

x -  X s -  ½8x~ x -  Xs + ½8Xs 
\ 

- - X  - -  - -  - -  1 - - ~ - -  I 3 - -  1 3 " n  jdA,s. 
Ix- Xs- ~xsl Ix- Xs + ~xsl 

Because of the linearity of the integrand the source and the sink contributions may be 
separated: 

- - - x  -~ . . . . .  ~ I d A , ~  

f ~  Ix-x~-½8x.I IX-Xs- ~,~x~l j 

1 

I x - Xs + ½~xs I 

(x  - xs + ½~Xs)'n 1 
- x  . . . . . . .  - - ~ l  ~ ] dA,s. 

Ix - Xs + ~Xs l  

To each integral we next apply Green's  reciprocal theorem to transform A,s into the 
surfaces of two spheres with radii cs and centres in x s + ½8x~ and x~ - ½8x s respectively. 
With (5) we obtain for the dipole contributions: 

- E [ k s ( x s  + ½ 8 x s ) - k s ( x s -  ½ ~ x s ) ]  = - Y ' . k s S x s  = - Y ' - ~ s -  
s s s 

The higher-order multipoles can be treated in a similar way. It is evident, however, that 
these do not contribute to the acceleration reaction. 

The final result is 

1 (6) 

As noted by Landweber and Miloh [2], it is sometimes more convenient to associate the 
deformation of the body surface with a potential q'd and use as an alternative to (6): 

<"> 0q f ] F A = P l  d 1DcV-- Emqs~xq(X)s+ ~dndA , ( 7 )  
s 
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where the symbol E~d) denotes summation over all singularities except those associated 
with the deformation potential. 

2.2. T h e  s t e a d y  f o r c e  

Rewrite the expression for the force on the body in steady motion as 

-- . , f  ( ~ . . . . .  - . . . ) d A  + . , f ( . . . -  - - v c -  - - - d - - ) d A .  

or, since u • n = (v c + v d)" n at the body surface, 

~ =  0 , f ( ~ - - - -  . . . ) d A  + p , f ( u v c . , ,  - , , .  v j , ) d A .  (8/ 

With the aid of the relation u v  c • n - u "  v,:n = v,: x ( u x n )  we obtain for the second integral 
in (8) 

fvc×(,×n)dA= -vc× f(v × u)dV= 0. 

Applying the divergence theorem to the volume bounded externally by the body surface 
and internally by surfaces A,s enclosing small regions about the points xs, we get 

es= o,f(½.'-- . . . ) d A  = o,E f ( ~ - ' - - -  . - . ) d A . .  
s 

Again, at each singular point the velocity field can be assumed to consist of a regular and 
a singular part of the form (4), hence 

" ' " n ) d A , + o i E f ( ½ U s ' U , n - - U s U s ' n ) d A , ,  Fs = P I E )  (]~Ur'I/rll" UrUr 
s s 

+~,E f ( - , - -~ -  - .~., ". - lgs/gr" n ) d A ,  . 
s 

For the first integral we obtain 

lim f ( ½ U r ' U r n - U r U r ° n ) d A , s = O .  
A,~O 

For the second integral we can calculate the contribution of each singularity separately by 
choosing a surface S s about the point x s in question and by applying next Gauss' theorem 
to the volumes V~ bounded by the surfaces Ss and A w 

, , , - , . - , - - - , - , - . , , , , - , , , . , . . , . - . , . , - . , , , ,  

-f(½Vxs(.,'.,)- v~ -( .s .s))dV~ 
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Because the singular velocity fields are both irrotational and solenoidal in V~ the volume 
integral equals zero. And since lud is at least as small as Ix - xd -3, the choice of Ss as a 
sphere of infinitely large radius shows the integral over S~ to vanish as well. To calculate 
the third integral, consider first the contribution of the monopoles: 

f [ m s ( x - - x s ) ,  m s ( X - X s )  

 [4<x xsl " 4 lx Xs¢ 
ms( x - xs) ] 

• n -  3u~'n ldA, ,  
47rlx- xsl J " 

which, by choosing the A,, to be surfaces of spheres with radii ~s and centres in x~, equals 

m S 
~s ~ c E s f ( n ° u r n - U r n ' n - n u r ' n ) d A , ,  

m s 
= - ~ ~ furdA,~ = - Ems'r(Xs)'s (9) 

The dipole contributions can be obtained from this result in a way which resembles the 
calculation of these contributions to the acceleration reaction. For any surface A,s, 
however small, a 8x S can be chosen such that the velocity field at A,~ is a superposition of 
the velocity fields of a source and a sink at x S + ½6x s and x s - ½8x~ respectively, 

ks( X-Xs-½8Xs 
.s(X)= ~ - - - -  ~-7~,~ 

I x - x s -  ~,xsl 

x - x s + ½6x~ 

I x -  x, + ½*xsl ~ 

with ksSx s =/~s. The source and the sink contributions can be considered separately, 
whence we obtain 

ks f [  ( x  x s  ½~x~) 
[ - -  1 3 

I x -  x~ ~ x s l  

(x - Xs - ~Sxs) 
1 3 ° / / - -  " l l r n - - U r l x _ X s _  ~ ¢~Xs [ 

ks f [  xs + ~Xs) 
1 3 ° Urn  --  u r  

4~r ix_  xs+~sxsl 

(x - Xs + ½8xs) 
1 3 

I x - x s +  :~xsl 
• R 

(x - Xs - ½8~s) ] 
1 3 U r ° n  ]dA,~ 

I X - -  Xs - ~ X s i  

( x - x s +  ½~xs) ] 
1 3 U r ' n  dA,. 

Ix - x s + ~ x  s 

Next, apply the divergence theorem to each integral in order to transform the A,~ into 
surfaces of spheres with radii c s and centres at x~ + ½8x s and x~-  ½8x s. With the 
monopole result (9), this yields 

- E [ks-r(Xs + ½8xs)-  k s . r ( x s -  ½~Xs)] = - EksSXs- v~(-r)s  
s s 

= - E~s" v~( .r)s .  
s 
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The contribution of the higher-order poles can be found in a similar way, and we finally 
have for the steady force 

~q 
Fs = - , o , E M q ~ ( , , r ) ~ .  

From (7) and (10) the generalized Lagally theorem is obtained: 

[ (~)oq fdPdndA_Pl~sMqs-~xq(Ur)s" F=p. d v~V- s Mqs-~xq(X)s + 

(10) 

3. Examples 

Consider a sphere with radius a(t) and centre at x~, moving with velocity v in an 
unbounded, nonuniform and unsteady potential flow, which has potential ff(Xc, t) and 
velocity u(x~, t) in x¢ in the absence of the sphere. An approximation to the potential 
field on the surface of the sphere is obtained by representing the sphere by a source and a 
dipole at the centre, with a dipole strength associated with the velocity in x c in the absence 
of the sphere, 

¢p(x, t )  = u ( x  c, , )" (x  - xc) a 2 d a / d t  
Ix-xcl 

- ½a3(u(xc, t) - v ) ' X T x - -  1 + O(ix_ xd-5): 
IX- Xcl 

The generalized Lagally theorem then yields as an approximation to the force on the 
body: 

4 3 F=pl{d[-~rav+ 2¢ra3(U(Xc, t)-v)] 

-4~ra2-~ttu(xc, t)+ 27ra3(U(Xc, t)--v)'Vx(U)xc}. (11) 

The first term on the right-hand side is the acceleration reaction. Since only monopoles 
and dipoles can contribute to this term and since there are no bodies or fixed surfaces 
present in the fluid in the case considered here, a full description of the flow field would 
yield exactly the same result as given in (11). This implies that the acceleration reaction of 
a rigid sphere in an impulsively generated unbounded inhomogeneous potential flow 
follows directly from the value of this potential field at the centre of the sphere. For a 
massless sphere we have 

v = 3 = ( x c ) ,  
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a result derived earlier by van Wijngaarden [5]. 
The relation (11) can also be written as 

F=plf2qra3fDlgl~ ~ Dt l ~c-  -5tra2 3dva + 2~ra2-~tt(u(x~'t)- v)}, (12) 

where D/Dt = O/Ot + u. Vx, the material derivative following the fluid and which is to be 
evaluated at the centre of the sphere. 

An important special case is that of a rigid body (for convenience taken to be a sphere) 
moving in an unbounded inhomogeneous unsteady potential flow, where the length scale 
of variations of the external flow field considerably exceeds the body's dimensions. The 
velocity field in the absence of the sphere can then be approximated by 

u(x, t) = uo(t ) + x'( VxU)o(t). 

When a sphere is placed at xc this results in a potential field which can be represented by 
the original potential field and contributions from a dipole and a quadrupole both placed 
at the centre of the sphere. Only the dipole contributes to the acceleration reaction, 

PI"~ d [-5~ra v+ 21ra3(u(x¢,t)-v) ] 3 

The contribution from the quadrupole to the steady force has the form of a second-order 
derivative of the regular flow field, to be evaluated at x c. Because of the linearity of this 
flow field the contribution is identically zero. Together with the dipole contribution 

2 a3(.(xo, t) -v) .  vx(u) , 

the exact force can be written as 

F=p,{2rra3(-~t). " - -~ra2 3dVd-t }" (13) 

The relations (12) and (13) which can also be inferred from work by G.I. Taylor (see e.g. 
Taylor [6]), are associated in recent gas-liquid two-phase flow literature with the names of 
Voinov [7] and Yakimov [8], and are considered to be the correct equations describing the 
average relative motion of the gas phase when viscosity effects are neglected. 

When the average gas velocity and the average liquid velocity are denoted by Ug and U I 
respectively, and the material derivatives with respect to the averaged velocities of the 
phases are given by 

D 3 d 0 
D t = Ot + U ' ' v '  d t  = Ot + Ug 'V ,  

it is believed that the Voinov-equation (12) suggests that the equation of motion for the 
gas bubbles in a bubbly liquid is of the form 

d D D 
--~ mUg - -~T mUl = pl ld-~ Ul, (14) 
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where J / i s  the average bubble volume and m is the average added mass which may be a 
function of the volumetric gas fraction. Although the Lagally theorem shows the Voinov- 
equat ion  to describe the mot ion  of one single bubble  in an inhomogeneous  flow field 
correctly, there is no just i f icat ion for a direct extension of it in the form (14) as a 
descript ion of the averaged mot ion  of a swarm of bubbles.  An  averaging proces might for 
instance reveal that flow-field variat ions over a length scale relevant for the mot ion  of the 
individual  bubbles  vanish in a con t i nuum descript ion of the flow in terms of averaged 
flow parameters  and their derivatives with respect to 'macroscopic '  length scales. The 
results of such an averaging process have recently been given by Biesheuvel & van 
Wijngaarden  [9]. 
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